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   

Abstract—In this research, a design of a new genetic algorithm 

(GA) is introduced to detect the locations of the License Plate 

(LP) symbols. An adaptive threshold method has been applied to 

overcome the dynamic changes of illumination conditions when 

converting the image into binary. Connected component analysis 

technique (CCAT) is used to detect candidate objects inside the 

unknown image. A scale-invariant Geometric Relationship 

Matrix (GRM) has been introduced to model the symbols layout 

in any LP which simplifies system adaptability when applied in 

different countries. Moreover, two new crossover operators, 

based on sorting, have been introduced which greatly improved 

the convergence speed of the system. Most of CCAT problems 

such as touching or broken bodies have been minimized by 

modifying the GA to perform partial match until reaching to an 

acceptable fitness value.  The system has been implemented using 

MATLAB and various image samples have been experimented to 

verify the distinction of the proposed system. Encouraging results 

with 98.4% overall accuracy have been reported for two different 

datasets having variability in orientation, scaling, plate location, 

illumination and complex background. Examples of distorted 

plate images were successfully detected due to the independency 

on the shape, color, or location of the plate.  

Index Terms—Genetic algorithms, image processing, image 

representations, license plate detection, machine vision, road 

vehicle identification, sorting crossover. 

 

I. INTRODUCTION 

HE detection stage of the LP is the most critical step in an 

automatic vehicle identification system [1]. A numerous 

research has been carried out to overcome many problems 

faced in this area but there is no general method that can be 

used for detecting license plates in different places or 

countries, because of the difference in plate style or design.  
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All the developed techniques can be categorized according to 

the selected features upon which the detection algorithm was 

based and the type of the detection algorithm itself. Color-

based systems have been built to detect specific plates having 

fixed colors [2], [3], [4].  External-shape based techniques 

were developed to detect the plate based on its rectangular 

shape [5], [6], [7], [8]. Edge-based techniques were also 

implemented to detect the plate based on the high density of 

vertical edges inside it [9]-[11].  Researches in [12] and [13]  

were based on the intensity distribution in the plate’s area with 

respect to its neighborhood where the plate is considered as 

Maximally Stable Extremal Region (MSER). Many 

researchers have combined different features in their systems 

[14], [15], [16], [17], [18]. The applied detection algorithms 

ranged from window-based statistical matching methods [18] 

to highly intelligent-based techniques that used neural 

networks [19], [20] or fuzzy logic [21]. GAs have been used 

rarely because of their high computational needs. Different 

researches have been tried at different levels under some 

constraints to minimize the search space of GAs. Researchers 

in [22] based their GA on pixel color features to segment the 

image depending on stable colors into plate and non plate 

regions, followed by shape dependent rules to identify the 

plate’s area. Success rate of 92.8% was recorded for 70 test-

samples. In [23], GA was used to search for the best fixed 

rectangular area having the same texture features as that of the 

prototype template. The used technique lacks invariability to 

scaling because fixed parameters have been used for the size 

of the plate’s area.  In [24], GA was used to locate the plate 

vertically after detecting the left and right limits based on 

horizontal symmetry of the vertical texture histogram around 

the plate’s area. The drawback of this method is its sensitivity 

to the presence of model identification text or other objects 

above or below the vehicle which can disturb the texture 

histogram. GA was used in [25] to recognize the LP symbols 

not to detect the LP.  Another group of researchers   tried to 

manipulate the problem from the texture perspective to 

differentiate between text and other image types [26], [27]. 

The main drawback of these segmentation techniques was 

their intensive computational demand and also sensitivity to 

the presence of other text such as bumper stickers or model 

identification. 

Detecting license text and at the same time distinguishing it 

from similar patterns based on the geometrical relationship 

between the symbols constituting the license numbers is the 
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selected approach in this research.  Consequently, a new 

technique is introduced in this paper which detects LP 

symbols without using any information associated with the 

plate’s outer shape or internal colors to allow for the detection 

of the license numbers in case of shape or color distortion 

either physically or due to capturing conditions such as poor 

lighting, shadows and camera position and orientation.  To 

search for the candidate objects and to allow for tolerance in 

the localization process, a new genetic algorithm has been 

designed with a new flexible fitness function. Image 

processing is carried out at first to prepare for the GA phase. A 

complete overview of the system is given in Section II. Image 

processing stages are presented in Section III. In Section IV, 

GA formulation is demonstrated.  In Section V, modifications 

to the GA stage to overcome most of the problems associated 

with CCAT are summarized. Finally, the results are discussed 

in section VI.     

II. SYSTEM OVERVIEW 

In this section, an overview of the system is introduced. The 

proposed system is composed of two phases: image processing 

phase and GA phase. Each phase is composed of many stages. 

The flowchart in Fig. 1 depicts the various image processing 

stages that finally produce image objects to the GA phase. GA 

selects the optimum LP symbol locations depending on the 

input GRM that defines the geometrical relationships between 

the symbols in the concerned LP. 
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 Fig. 1.  The system’s overall flowchart for the localization of the LP symbols. 

III. IMAGE PROCESSING PHASE 

In this phase, an input color image is exposed to a sequence 

of processes to extract the relevant two dimensional objects 

that may represent the symbols constituting the LP. These 

processes that are carried out in different stages, as depicted in 

Fig. 1, will be presented in the following subsections.  

A. Color to grayscale conversion  

The input image is captured as a color image taking into 

account further processing of the image to extract other 

information relevant to the concerned vehicle. Color (RGB) to 

grayscale (gs) conversion is performed using the standard 

NTSC method by eliminating the hue and saturation 

information while retaining the luminance as follows: 

gs=0.299*R+0.587*G+0.114*B              (1) 

Fig. 2 shows an example of the output of this stage that will 

be used as input to the next stage. 

     
Fig.  2.   Converted grayscale image. 

B. Gray to binary using a dynamic adaptive threshold 

Converting the input image into a binary image is one of the 

most sensitive stages in localizing LPs due to spatial and 

temporal variations encountered in the plate itself and the 

environment around it resulting in several illumination 

problems. Hence binarization of the image according to a 

fixed global threshold is not suitable to overcome these 

problems. In our system, a local adaptive method based on the 

techniques described in [28] has been implemented to 

determine the threshold at each pixel dynamically depending 

on the average gray level in the neighborhood of the pixel. A 

simple yet effective rule has been adopted to differentiate 

between foreground and background pixels. If the pixel 

intensity is higher than 90% of the local mean it is assigned to 

the background; otherwise it is assigned to the foreground. 

The 10% offset below the mean is chosen experimentally to 

minimize the sensitivity to fluctuations in illumination.  The 

size of the window used to calculate the threshold for each 

pixel is selected according to the image resolution and the 

expected size of the license symbols.  A 30x30 window has 

been applied on the first set of image samples used in this 

research, which resulted in a high accuracy rate in different 

illumination conditions as will be presented in the results 

section. Although some images can be binarized successfully 

using Otsu's global threshold method [29] as shown in Fig. 

3(a), others as that shown in Fig. 3(b) may produce incorrect 

results as shown in Fig. 3(c). On the other hand, local adaptive 

binarization will give satisfactory output as shown in Fig. 3(d) 

for the same image in Fig. 3(b).  

 
Fig. 3. (a) Converted binary image for  image in Fig. 2,  using Otsu's method,  

(b) Car image with variable illumination,  (c) output when using Otsu's 

method for image in (b), (d) output when applying local adaptive threshold 
method for the same image in (b).  
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C. Morphological operations  

Morphological operations such as dilation and erosion are 

important processes needed for most pattern recognition 

systems to eliminate noisy objects and retain only objects 

expected to represent the targeted patterns.   In LP detection, 

closing operation (dilation followed by erosion) is performed 

to fill noisy holes inside candidate objects and to connect 

broken symbols. On the other hand, opening (erosion followed 

by dilation) is applied to remove objects that are thinner than 

the LP symbols.  In our system, closing is applied to fill 

spaces that break the bodies of symbols using a 3-pixel-disk 

element in the first experiment. This process is very important 

especially for the recent Saudi LP layout where a light gray 

watermark is used for authentication purposes. This 

watermark becomes white after the binarization process and 

breaks down most of the bodies of the LP symbols as shown 

in Fig. 4(a). Fig. 4(b) shows the output after applying closing. 

For non Saudi LP images, a disk radius of less length is used 

to prevent filling the spacing between the LP symbols.  

Removal of thin objects is performed in the size filtering 

stage.  

 
Fig.  4.  Morphological closing using 3-pixel disk- element 

(a)Input Binary Image, (b)Image after closing operation. 

D. Connected Component Analysis (CCA) and objects 

extraction 

CCA is a well known technique in image processing that 

scans an image and groups pixels in labeled components based 

on pixel connectivity [30]. An 8-point CCA stage is performed 

to locate all the objects inside the binary image produced from 

the previous stage. The output of this stage is an array of N 

objects.  Fig. 5 shows an example of the input and output of 

this stage.  

 
Fig. 5.  CCA example: (a) Input image, (b) output objects (N=2287).  

E. Size filtering 

The objects extracted from the CCA stage are filtered on 

the basis of their widths Wobj and heights Hobj such that the 

dimensions of the LP symbols lie between their respective 

thresholds as follows: 

Wmin ≤ Wobj ≤Wmax   and    Hmin ≤Hobj ≤ Hmax       (2) 

Where Hmin and Wmin are the values below which a symbol 

cannot be recognized (8 pixels for example) and Wmax can be 

set to the image width divided by the number of symbols in 

the license number. Hmax is calculated as Wmax divided by the 

aspect ratio of the used font. The ranges of these values can be 

narrowed in the case of a mounted camera to speed up the 

process of detection but for a moving camera, the ranges 

depend on the required object to camera distance range. The 

output of this stage is an array of M objects.  An example for 

the output of this stage is given in Fig. 6 after applying size 

filtering on the objects shown in Fig. 5(b). 

 
 

Fig. 6.  M objects (64) output after size filtering of the N objects in Fig. 5(b). 

IV. GA PHASE 

In the following sections, the formulation of the GA phase 

to resolve the 2D compound object detection problem will be 

introduced in details, indicating the encoding method, initial 

population setup, fitness function formulation, selection 

method, mutation and crossover operator design and 

parameters setting.  

A. Chromosome encoding 

Encoding of a compound object such as the LP is 

accomplished based on the constituting objects inside it. Since 

the next step after plate detection is to recognize the license 

number, hence the main symbols identifying the plate number 

should be included as a minimum.  In the case of the recent 

Saudi LP, for example, there are 4 Arabic digits and 3 English 

letters. Other symbols in the LP can be added to extend the 

representation for more layout discrimination if needed. In our 

experiments, only the 7 symbols (4 digits and 3 letters) are 

used to detect the LP number. Hence for the Saudi layout, as 

an example, the chromosome will be composed of 7 genes as 

shown in Fig. 7. An integer encoding scheme has been 

selected where each gene i is assigned an integer j which 

represents the index to one of the M objects output from the 

size filtering stage.  The information that will be used for each 

object j is as follows: 

 The upper left corner coordinates (X, Y) of the rectangle 

bounding the object. 

 The height (H) and width (W) of the rectangle 

bounding the object. 
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Fig. 7.  A chromosome of 7 genes for the representation of the Saudi LP. 

B. Defining the fitness function  

The proposed fitness is selected as the inverse of the 

calculated objective distance between the prototype 

chromosome and the current chromosome.  Before clarifying 

how the objective distance is measured, we will show first 

how the geometric relationships between the objects inside a 

compound object are represented, followed by a discussion of 

parameter adaption in case of various LP detection layouts. 

Compound object representation 

For any two objects, we will use two types of geometrical 

relationships that can be defined as follows: 

1. Position relationship: 

The position relationship will be represented by the 

relative distances between the bounding boxes of the 

two objects in the X and Y directions. 

2. Size relationship: 

The size relationship will be represented as the 

relative differences in their bounding boxes’ heights 

and widths. 

In the above relationships, relativity is achieved   by 

dividing on the height or width of the first object depending on 

which is more stable for practical reasons although it is 

logically to divide differences in heights on height and 

differences in widths on width to compensate for scale 

changes in the general case. For most LPs (see Appendix), the 

heights of symbols are almost equal for both digits and letters 

while some symbols have different widths than others. Hence, 

normalized relationships between any two objects can be 

based on the height of the first object. 

 

 

 

 

    

      

 

 

 
Fig. 8.  The layout of two objects O1and O2. 

Considering the two objects O1 and O2 shown in Fig. 8, 

the position relationship is defined in the two directions by the 

following formulas: 

          –                    (3) 

          –                   (4) 

The size relationship is defined by the following 

formulas: 

                           (5) 

                           (6) 

The above representation, although preserves the geometric 

relationships between the rectangles bounding the objects, it 

does not represent the objects’ shapes because they are 

unknown in case of an unknown plate. Only the aspect ratio 

for fixed width-fonts can be added for the first object as 

follows: 

AS1=W1/H1.                  (7) 

To generalize the representation for any compound object 

composed of L objects, only   4(L-1) relationships will be 

required in addition to the aspect ratio for the first object. 

For example, if we consider the Saudi LP shown in Fig. 9, 

25 relationships will be required to represent the layout of the 

seven lower license symbols (4 Arabic digits and 3 English 

letters) (L=7). 

 
Fig. 9.  Saudi LP with rectangles bounding the represented symbols. 

In general, for L-symbol LP we will need (4(L-1)+1) values 

to represent the license number. Placing the values of the 

different relationships in one matrix (excluding the aspect 

ratio), produces what we called the geometric relationships 

matrix GRM. Table I presents the values of the GRM for the 

Saudi LP shown in Fig. 9; where the variable j denotes the 

index of each symbol from left to right. 

TABLE I:  GRM VALUES FOR THE SAUDI LP. 

j 1 2 3 4 5 6

RX j+1,j 0.615 0.615 0.615 0.77 1 1

RY j+1,j 0 0 0 0.2 0 0

RW j+1,j 0 0 0 -0.08 0 0

RH j+1,j 0 0 0 -0.5 0 0
 

To adapt the system for a different LP layout either in the 

same country or in a different one, a different GRM matrix 

can be simply defined.  

Objective Distance (OD) and Fitness Formulation 

Considering the distance between the prototype 

chromosome p, corresponding to the input GRM, and any 

chromosome k, five distance values can be defined as follows: 

                    
           

    
      (8) 

                    
           

    
        (9) 

                    
               

       (10) 

                    
               

        (11) 

gene number (i) : 1      2          3         4             5            6           7 

 

object 

index ( j)   
3 1 5 7 11 2 15 
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                              (12) 

Clearly, these distance values will be considered as the 

objective distance functions in our GA problem, which should 

be minimized. 

Combining the five objective distance functions into one 

global objective distance function        that represents the 

distance between any chromosome k and the prototype 

chromosome p, is performed through the following formula: 

                                   

                              (13) 

Where    ,   ,   ,    and      are weighting parameters 

that should be given values according to the problem under 

consideration. 

Since, as stated in the literature, the fitness is a function that 

should be maximized, hence the fitness of chromosome k 

(    ) can be related to the global objective distance function 

as follows:  

                             (14) 

Adaption for the LP detection problem  

The previous formulation can be used for the representation 

of a compound object consisting of a group of smaller objects 

and can be used to locate the compound object in an image 

given that its GRM values are nearly fixed. This formulation 

has an advantage of overcoming scaling effect. It can also 

overcome orientation variability either by aligning the 

compound objects to a certain direction line or by taking 

projection parameters into account in the original formulation. 

Although in our formulation, orientation independency is not 

taken into consideration, detection of plates having different 

orientations has been achieved as will be shown in the results 

section due to the flexible range of accepted fitness (or 

objective distance) values.  

An important issue that should be considered when adapting 

the previous model for LP detection is the variable nature of 

the internal components (letters or digits) in an unknown plate. 

In other words, the symbols inside an unknown plate can vary 

in size and/or spacing. Hence representation of an unknown 

plate license number will require some adaptation of the 

general model according to the nearly stable features of the 

symbols used in the plate and the relative spacing between 

them. Referring to the Appendix which contains 25 LPs for 25 

different countries in different continents, adaption can be 

carried out as follows: 

 Since, in some LP layouts especially in Arabic countries, 

the symbols used can differ greatly in their widths, hence 

the term corresponding to the relative width can be 

neglected by setting the weighting parameter ww to zero.  

 The aspect ratio of the starting letter is not fixed in case of 

variable width fonts and also may be changed due to 

perspective mapping. Hence, a range of accepted values 

of the aspect ratio can be imposed in the size filtering 

stage based on the characteristics of the used font. This 

means that the parameter     may also be set to zero. 

 The values of the parameters   ,   ,    can be selected 

to reflect the importance of each term as follows.  

- Since the license symbols are almost horizontally 

aligned, then     will be given the highest value (e.g. 4).  

- For fixed height fonts,    can be as high as    (e.g. 4), 

but for the general case its value can be selected lower 

than    (in case of Arabic letters) because horizontal 

alignment is more important than height changes. 

- The term          corresponds to the horizontal 

distance between LP symbols which can vary for 

variable width fonts; hence its weighting parameter     

will be given the lowest value (e.g. 1).  

 Hence, the objective distance  function for the detection 

of the LP number for almost all LPs (Arabic digits and 

English letters) shown in Appendix, can be put in the 

following form: 

                                 (15) 

It should be recorded here that the selection of the 

weighting parameters affects and guides the genetic search 

space during the production of new generations and hence 

affects both speed and accuracy of the overall system. 

Finally, by substituting from 15 into 14, the formula for the 

fitness of a chromosome k (    ) is given as follows: 

                                   (16) 

C. The selection method 

In our system, the Stochastic Universal Sampling (SUS) 

method has been adopted for the selection of offspring in the 

new generation.  In SUS method [31], each individual is 

mapped to a continuous segment of a line equal in size to its 

fitness as in roulette-wheel selection. Then, a number of 

equally spaced pointers are placed over the line depending on 

the percentage of individuals to be selected. In our system, 

individuals of ninety percent of the population size (0.9 Z) are 

selected to be exposed to mutation and crossover operators. 

D. Mutation operators 

Mutation is needed because successive removal of less fit 

members in genetic iterations may eliminate some aspects of 

genetic material forever. By performing mutation in the 

chromosomes, GAs ensure that new parts of the search space 

are reached to maintain the mating pool variety [32]. We have 

implemented two types of interchangeably used mutation 

operators; substitution operator and swap operator as follows: 

Substitution operator 

In this type of operators, a random position in the 

chromosome is selected and the corresponding allele is 

changed by a new random object from the M available objects. 
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The new object should be legitimate which means it does not 

belong to the current mutated chromosome.  Fig. 10(a) shows 

an example of the application of this operator. 

Swap operator 

In this operator, we implemented the reciprocal exchange 

mutation that selects two genes randomly and swaps them as 

shown in Fig. 10(b). This operator has the advantage of 

rearrangement of the mutated chromosome in a way that may 

improve its fitness by reordering of the internal objects to 

match the prototype’s order. 

              
  (a) Substitution operator.                    (b) Swap operator. 

Fig. 10.  Examples for the used mutation operators. 

E. Crossover operator 

There are many methods to implement the crossover 

operator. For instance, single point crossover, two point 

crossover, n-point crossover, uniform crossover, three parent 

crossover and, alternating crossover [33], etc. These operators 

are not suitable for our problem because the resultant children 

will not be valid because of repeated genes that may be 

produced in the generated chromosomes. Also, if we prevent 

repetition, the resultant children‘s fitness will be enhanced 

slowly because of the randomness of these mechanisms. An 

alternative solution is to design a suitable crossover operator 

that insures enhancement of the generated offspring.  Since, in 

case of LP detection problem, GA is used to search for a 

sequence of objects having nearly the same y-position and 

placed in order according to their x-positions, then the 

problem can be gradually solved by dividing the recombined 

chromosomes’ objects according to their y-positions into two 

groups and then sorting each group (constituting a 

chromosome) according to the x-positions.   Following the 

above discussion, we propose a new crossover method that 

depends mainly on sorting as follows: 

1. The two parent chromosomes are combined into one longer 

array Carray that includes a number NC of non repeated 

genes as shown in Fig. 11 (a, b, c). The underlined gene 

number indicates its repetition and that only one copy of it 

will be transferred to Carray.   

2. The genes inside Carray are sorted in ascending order 

according to the Y-coordinate of the object corresponding 

to each gene as shown in Fig. 11(d).  

3. Carray is scanned from left to right starting from index 1 to 

L, to construct the first child giving it the first L genes as 

shown in Fig. 11(e). 

4. Carray is  scanned from left to right starting from index 

NC-L+1 to NC, to construct the second child giving it the 

last  L genes as shown in Fig. 11(f). 

5. Each child is sorted in ascending order according to the X-

coordinate of each gene’s object to produce the final shape 

of each child as shown in Fig. 11 (g, h) respectively. 

 
Fig. 11.  The proposed crossover operator steps.  

Since this operator starts by combining objects without 

repetition (Union operation) and then performs Sorting and 

Partitioning followed by Sorting, we can call it USPS 

crossover to differentiate it from the known sorting crossover.  

Although sorting requires a significant time, the overall time is 

a- Parent 1 
1 

1 2 3 4 5 6 7 gene index 

gene value 

X, Y 
 12,18 9,4   3, 10  8, 11   2, 20  6, 5 14,13 

 5 6 4 9 7 8   11 
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1 2 3 4 5 6 7 gene index 
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  15 
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c- Carray, after combination operation  

 gene index 
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1 2 3 4 5 6 7 8 9  10 11 12 13 

5 6  4 9 7 8 11 3 2 10 1 12 15 
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gene value 1 6 8 10 12 4 9 

f- Child 2, before sorting 

gene value 
9 3 11 15 5 2 7 

g- Child 1, after sorting in ascending order according to X-
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h- Child 2, after sorting in ascending order according to X-

coordinate. 

gene value 7 2 3 9 5 11 15 

d- Carray, with genes sorted in ascending order on Y  
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reduced because the number of generations needed to reach to 

the stopping criteria is sharply decreased as shown in Fig. 

12(b) compared to the case of 2-point random crossover 

shown in Fig. 12(a).  The offspring of the random crossover 

are repaired by replacing repeated genes by non repeated ones 

randomly. Fig. 13 presents another 2 examples in which the 

USPS crossover outperforms the 2-point random crossover.  

   
   Fig. 12.  Objective Distance (OD) convergence graphs for the image 

in Fig. 2, using 2-point random crossover in (a) and USPS crossover in (b). 

 
 Fig. 13.  Objective Distance (OD) convergence graphs for the two images 
shown in a-1 and a-2 with random crossover in b-1 and b-2 and USPS 

crossover in c-1 and c-2 respectively.  

Trying other types of crossover operators may give better 

results than the tested one, but we are sure that our proposed 

crossover will outperform them because it generates the final 

solution almost in one step if the solution genes are included 

in the original parents. Moreover, it gives excellent 

intermediate solutions by clustering the objects based on their 

y-positions and sorts them based on x-positions. 

F. Replacement strategy  

Many replacement strategies are used in case of replacing 

only a portion of the population between generations. The 

most common strategy is to probabilistically replace the less 

fit individuals in the previous generation. In elitist strategy the 

best fit individuals of the previous generation are appended to 

the current population [34]. In our proposed system, the best 

10% of the parents are selected and appended to the offspring 

(90%) to produce the new generation (100%). 

G. Stopping criteria 

The GA stops if one of the following conditions is met: 

1-The best chromosome’s objective distance (OD) is less 

than 5.  (This value is found by trial and error). 

2-The average objective distance (AOD) is not improved for 

6 successive generations. In this case, the chromosome 

having minimum objective distance can be accepted if it 

is less than 8. This maximum limit will affect the 

allowable angle range for the detected license numbers as 

shown in Table II. 

TABLE II: OBJECTIVE DISTANCES (OD) FOR PLATES INCLINED AT DIFFERENT 

ANGLES [A:-30◦
 TO +45◦ ]. 

     
A = - 3 0

◦
, 

OD=16.6 

A = - 2 0
◦
, 

OD=11.2 

A = 1 0
◦

, 

OD=6.4 

A = 2 0
◦

, 

OD=11.2 

A = 4 5
◦

, 

OD=19.2 

3-The number of generations Ngen reaches to the maximum 

number of generations MaxNgen (set to 20). 

H. Parameters setting  

The population size (Z) is selected dynamically according to 

the formula developed in [34] as follows: 

Z =1.65 × 2
(0.21*blength)

                 (17) 

Where blength is the length of the chromosome in case of 

binary encoding.  In case of integer encoding, for L genes and 

M objects, we substitute for blength by: 

blength =L (Log2(M))                (18) 

Although formula (17) is driven in 1989, it speeds up the 

convergence of the GA as shown in Fig. 14 (Z=845, Ngen=5) 

compared to the graph in Fig. 12(b) with static population size 

(Z=500, Ngen=12) for the same image in Fig. 2. 

 
Fig. 14.  OD convergence graph for dynamic population size (Z=845). 
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V. MINIMIZING CCAT PROBLEMS 

The main drawback of all systems relying on CCAT is the 

sensitivity to negative or positive noise that may cause some 

symbols to be connected to other objects or broken into 

smaller objects. Connectivity is also affected by many causes 

such as bullets, dirt, aging, occlusion, shadows, or due to 

image processing operations like dilation and erosion. The 

effect of connected symbols either to their neighbors or to the 

frame of the LP is the introduction of high objective distance 

when matched with the corresponding GRM. This surely, will 

cause the system to select another near symbol or to report 

absence of LP in the current image. The same is said in the 

case of broken bodies, where a large error is detected in the 

relative width/height terms. The proposed solution for this 

problem is to introduce a new argument in the genetic 

algorithm which indicates the number of symbols to skip (NS) 

during the evaluation of the objective distance. This number is 

initialized to zero in the first run of the GA and according to 

the optimum OD threshold value (ODT), a decision is made 

either to accept the selected chromosome or to increase the NS 

argument and execute a further run of the GA. Depending on 

the number of LP symbols (L) under consideration, the 

skipping number NS can reach to a maximum value given that 

L-NS>=3. If NS is greater than zero then NS random numbers 

having values between 1 and L are generated inside the OD 

evaluation function, and the corresponding gene error 

distances are skipped. Surely, these random numbers should 

be stored in separate fields associated with each chromosome 

as shown in Fig. 15.  

 

 

 

NS=3 

 
 

Fig. 15.  An example for the locations of skipped genes stored in separate 
fields associated with each chromosome. 

Finally if the OD threshold (ODT) test is met, the location 

and size of the skipped symbols are estimated based on the 

GRM matrix and the non skipped symbols using some 

geometrical rules. The flow chart illustrating the logic of these 

steps is shown in Fig. 16. The proposed modification has 

solved many problems happening due to static causes like dirt 

and pullets or dynamic causes like shadows, lighting and even 

blurring caused by camera movement because it gives another 

dimension for solving the LP detection problem by expecting 

locations of occluded or distorted symbols. Fig. 17 shows an 

example of two images from two different layouts (Saudi and 

Greece) containing touching symbols in two different ways 

which have been correctly detected after GA modification. 

 Another simple yet very effective modification is done to 

cluster objects based on their x-positions by introducing an 

alternate USPS crossover which works interchangeably with 

the described one but it sorts the unified parents based on x-

positions first instead of y and hence after the partitioning 

step, children will be already sorted based on x-positions. This 

modification speeds up the GA phase in case of large number 

of objects output from CCAT by about 20% than without it.  

 
Fig. 16. Flowchart for detecting LP’s symbols in case of touching and broken 

symbols.   

 

(a)                                     (b)  
Fig. 17.  Examples for locating symbols touching the digit’s bounding box 

(digit ‘1’ in (a)) and touching each other (last two digits in (b)).  

VI. RESULTS AND DISCUSSION  

The proposed system has been implemented using 

MATLAB. Two experiments were carried out. The first 

experiment was done on a Saudi LP dataset composed of 800 

car images acquired at various camera-to-object relative 

positions in different lighting conditions. To compare our 

results, we consider the work published in [9], because it used 

an annotated database which allows us to precisely experiment 

our technique on the same dataset. Hence, the second 

experiment is performed on the same 335 image samples used 

by [9] that are available in [35] for Greece LPs (shown in the 

Appendix table (column 2 row 2)). This database includes four 

datasets: Day (color images large sample), Day (close view), 

Day (with shadows), and Shadows in plate. Only one standard 

Greece LP image is used to construct the GRM matrix to adapt 

our system on this different layout as shown in Table III. 

Noting that zero values in the 2
nd

, 3
rd

, 4
th

 rows mean same base 

line, fixed width and fixed height respectively for all the 

symbols used in the defined plate. In both experiments,  the 

third raw is neglected by setting the weighting parameter ww to 

zero due to violation of the fixed width for the letter ‘I’ and 

digit ‘1’. Results of our experiments are summarized in the 

first three rows in Table IV; where false positive (FP) means 

assigning incorrect locations to LP symbols. Surely the 

remaining undetected cases are false negative (FN) cases 

where each image includes an LP but the ODT test is not met 

YES 

YES 

YES 

NO 

NO 

   NS=0 

  GA(NS) 

OD<ODT 

T 

L-NS >= 3 

Locate skipped 

symbols  

LP is not found  

 NS=NS+1 

NS > 0 

Send locations to next 

stage  

NO 

  gene number (i) : 1        2          3         4         5         6       7 
  object  

  index (j)    3 1 5 7 11 2 15 

2 4 7 
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for all combinations of objects in the tested images. Results 

for the two experiments done by [9] are shown in the 4
th

 and 

5
th

 rows in Table IV. The first experiment done by [9] is 

performed on the same 335 samples in [35]. The second 

experiment is done after appending an enlarged version of the 

largest 113 images in the first experiment to its 335 samples. 

TABLE III:  GRM FOR THE GREECE LP. 

j 1 2 3 4 5 6

RXj+1,j 0.8 0.8 1.55 0.8 0.8 0.8

RYj+1,j 0 0 0 0 0 0

RWj+1,j 0 0 0 0 0 0

RHj+1,j 0 0 0 0 0 0

 TABLE IV: RESULTS OF OUR EXPERIMENTS AND [9]’S EXPERIMENTS. 

Exp # 
Number 
of  test 
samples 

Detected  False 
negative 
N#(rate) 

False 
positive 
N#(rate) 

Success 
 rate 

without 
skipping 

with 
skipping 

1st(ours) 800 738 52 8 (1%) 2 (0.25%) 98.75% 

2nd(ours) 335 297 30 6 (1.79%) 2 (0.59%) 97.61% 

1&2(ours) 1135 1035 82 14 (1.23%) 4 (0.35%) 98.41% 

1st[9] 335 333 2 (0.6%) 45 ( 13.43%) 99.4% 

2nd[9] 448 441 7 (1.5%) 54 (12.05%) 98.4% 

 

Although the detection rate in 1st[9] is higher than in 2nd(ours), 

we have less FP rate (0.25%) compared to (13.4%). In 

addition, the output of our system is at the second stage of LP 

recognition systems (symbol segmentation stage), which 

implies that the error percentage in [9] will increase after 

performing the symbol segmentation stage. Moreover, the 

method in [9] used 89 random samples from 335 samples to 

adapt the system which can be considered as training samples 

that are used again in the test phase. In our case, only one 

sample (outside of test dataset) is required to construct the 

GRM matrix, no training is needed. The second experiment 

performed by the author in [9] was done to prove the ability of 

his system to detect larger LPs, which resulted in extra 5 

undetected samples (after adding 113 samples), which means 

that the system accuracy is affected by scaling. In our case, 

scaling, will not affect the results if done on the same dataset 

as long as the candidate symbols lie within the specified 

ranges in the size filtering stage. This can be verified from the 

results of our first experiment where symbol heights ranges 

from 16 to 300 pixels. Also, we can deduce that the system in 

[9] is resolution dependent because all images were scaled to 

640x480 before performing the experiments. However, the 

following samples of images reveal the robustness and 

distinction of our approach. Samples from the first set of 

images in experiment 1 are shown in table V and samples 

from the second set in experiment 2 are shown in table VI and 

VII. The real number below each image indicates the objective 

distance value according to the input prototype GRM for each 

experiment. The maximum accepted value of the OD for both 

experiments is 8 (increased to 15 to show cases –some of them 

are outside the test samples- having physical or perspective 

distortion or blurring due to movement of the capturing 

device). Table VII includes samples categorized as in [35]. 

The shown images include the following difficulties: 

 Different resolution, scaling, different perspective 

distortion and different plate locations for all images in both 

experiments. 

 Different illumination  conditions at day and night with 

- Poor ambient lighting: Table V: E1, E2, E3, E4, and 

Table VI: B1, D5. 

- Blurred images: Table V: A2, B3, B4, C2, C3, C4, C5, 

D5, D6 and Table VI: B4, E4, G4. 

- Shadows: Table V: A2, A3, A4, A5, B4, D4, H1 and 

Table VI: B2, B3, C2, C4, D4, F1. 

- Low contrast: Table V: B2, D2 and Table VI: A1, C1, 

C2, D3, F2. 

- Strong headlight, back light or high flash influences: 

Table V: F1, F2, F3, F4, F5 and Table VI: G2, G4. 

 Plate distortion: Table V: A1, B1, C1, C2, C3, C4, C5, 

C6, E5 and Table VI: A1, A2, A4, D3, E1, F1. 

 Aging effects: Table V: A1, B1, E5, E6, H5, H6, G5, F6 

and Table VI: A1, A2, C3, F3. 

 Pictures cluttered with : 

- Texture regions (inside or outside the vehicle): Table 

V: A3, E6, H1, H2, H3, H5 and Table VI: A5, C4, D5, 

E3, F1, F2, F3, G1, G3. 

-  Edge regions (inside or outside the vehicle): Table V: 

A1, B4, E5, H4, H6, and Table VI: C1, D1, F4, G3. 

- Different objects in the background: Table V: A3, C4, 

D4, H2 and Table VI: A3, C1, C2, C4, E2, F3, F5, G5. 

 Examples of images detected despite the presence of 

other text similar to the license number’s text: Table V: D3, 

G1, G2, G3, G4, G5 and Table VI: A5, G5. 

 Both LP background and vehicle body have the same 

color: Table V: B2, B5, C3, C4 and Table VI: B3. 

 Plate background color is not white: Table VI: D1, D2.  

 Touching symbols (detected after skipping modification): 

Table V: A6, B6, C6, E6, H5 and Table VI: A4, A5, B3, B5, 

C5, D3, D5, F1. 

 Broken or missed symbols (detected after skipping 

modification): Table V: A1, E5, F6, H6 and table VI: A1, 

A2, C1, E5, F3. 

Regarding the speed of our system, without code 

optimization and working on a 2.6 GHZ PC with 2 GB RAM, 

on average 0.12s is needed to locate the LP symbols for low 

resolution images (640x480) and 0.34s for high resolution 

images (2048x1536). This non linear relation between speed 

and resolution is due to other factors that affect the speed of 

different stages of the system such as the complexity of the 

image which affects both image processing and GA stages. 

The character recognition phase is expected to take not more 

than 0.03s because all symbol images are now available, no 

further segmentation is required.  Hence, 2 to 6 images per 

second can be fully recognized depending on the resolution 

and capturing conditions.   If we consider the detection speed 

in [9], which ranges from 39ms to 49.8ms for 640x480 

resolution, we will notice that our system is approximately 

two times slower than [9] but many points should be 

considered regarding this difference in speed. First, there is an 

extra time needed to segment the LP into isolated symbols as 

in our system. Second, the grayscale conversion and size 

scaling times may not be considered in [9]. Third, the author 

in [9] didn’t mention the programming environment which 

may be visual C++ or MATLAB. Finally, we believe that 

enhancing the speed of our system needs further code 

optimization at many stages. 



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

TEVC-00409-2012.R1 10 

TABLE V: EXAMPLES OF IMAGES DETECTED IN EXPERIMENT 1 WITH OD VALUES UNDER EACH. 

  

 
 

 

 

 . 
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TABLE VI: EXAMPLES OF IMAGES DETECTED IN EXPERIMENT 2 WITH OD VALUES UNDER EACH IMAGE. 
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TABLE VII: EXAMPLES OF IMAGES DETECTED IN EXPERIMENT 2 AS CLASSIFIED IN [35].
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Considering the genetic phase’s speed, great enhancement 

has been achieved after using the USPS crossover operator. 

Future research may consider clustering objects according to 

their sizes and/or positions before being supplied to the 

genetic phase to allow for the detection of multiple plates and 

at the same time to increase the system speed.  Currently, our 

system can be used as it is in parking management systems, 

and in the detection of LPs in pictures taken in emergent 

circumstances that do not allow adjustment of the position and 

orientation of the camera with respect to the vehicle.  An 

important point that should be recorded here is that through all 

the experiments done, we have tried many types of local  

adaptive thresholding methods, none of them gave 0% error 

rate but after introducing the skipping part of the genetic phase 

the error percentage due to binarization has been minimized as 

shown in the final results. Local adaptive (or dynamic)  

thresholding has been used a lot but integrating it with CCAT 

and the skipping GA gives our technique distinction  among 

others. In spite of increasing the computation time of the 

system, the skipping part in the genetic phase reduces human 

intervention rate in case of system failure in the detection of 

some LPs. In other words, more effort should be carried out in 

the image processing phase to reduce the skipping time while 

maintaining high accuracy rate of the system. 

CONCLUSIONS 

A new genetic based prototype system for localizing 2-D 

compound objects inside plane images has been introduced 

and tested in the localization of LP symbols. The results were 

encouraging and a new approach for solving the LP detection 

problem relying only on the geometrical layout of the LP 

symbols has been experimentally proved.  Also, a flexible 

system has been introduced that can be simply adapted for any 

LP layout by constructing its GRM matrix. The system proved 

to be invariant to object distance (scaling), insensitive with 

respect to perspective distortion within a reasonable angle 

interval, and immutable to a large extent to the presence of 

other types of images in the vehicle background. Due to the 

independency on color and the adaptive threshold used for 

binarization, the proposed system possessed high immunity to 

changes in illumination either temporarily or spatially through 

the plate area.  Furthermore, our experiments proved that 

although leaving some features in the compound object 

representation due to the variable nature of the internal objects 

such as the aspect ratios and the relative widths, a high 

percentage success rate was achieved with the aid of the 

adaptability aspect of the GAs. The ability of the system to 

differentiate between LP text and normal text has been proved 

experimentally. A very important achievement is overcoming 

most of the problems arising in techniques based on CCAT by 

allowing the GA to skip gradually and randomly one or more 

symbols to reach to an acceptable value of the objective 

distance. Moreover, an enhancement in the performance of the 

developed GA has been achieved by applying the new USPS 

crossover operators, which greatly improved the convergence 

speed of the whole system. Finally, a new research dimension 

for GAs has been opened to allow for the detection of multiple 

plates and even multiple styles in the same image and to 

increase the performance in terms of speed and memory and to 

apply the same technique in other problem domains analogous 

to the LP problem. 

Appendix 
A TABLE OF  25 LPS FOR 25 COUNTRIES IN THE 5 CONTINENTS. 
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